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Universidad Complutense de Madrid, Madrid-3, Spain 
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Abstract. The field equation for a classical nonlinear O(2, 1)-invariant o-model in two 
dimensions may be written as the single scalar equation z,, = 2z,z,(z + . ? - I  for a complex 
field z. Two infinite families of conserved currents for this equation are obtained by means 
of its representation as the integrability condition of a linear system of equations. One 
of the resulting families is of non-local type. 

1. Introduction 

The equation 

ZU" = 2ZUZ~/(Z + 2 )  

is closely related to the classical O(2,l)-invariant nonlinear cT-model in two dimensions. 
It may be represented as the integrability condition for a first-order linear system of 
partial differential equations or, equivalently, by means of a connection with vanishing 
curvature on an appropriate principal bundle with two-dimensional base space. This 
equation possesses Backlund transformations (Chinea 1981a,b) and an infinite number 
of conserved currents; it is the purpose of the present note to show the last property. 
The construction of the conserved currents is based on the representation (2.2), as 
well as on the gauge covariance of such a system. This allows us to obtain an equivalent 
linear system (2.6), which may be formally solved by means of the Riccati equation 
(3.2). The coefficients of appropriate power expansions in a real parameter k of the 
solution to the Riccati equation give rise to the conserved currents (for other applica- 
tions of this method see Guil (1982)). It is of interest to notice that two types of 
power expansions may be introduced, one in negative powers and the other in positive 
powers of k. The expansion in negative powers yields currents of the usual type, 
depending on the field and its derivatives. The expansion in positive powers, however, 
leads to conservation laws containing non-local quantities. This type of non-local 
current has been recently considered in connection with equations related to (2.1) 
(see, for instance, Sasaki and Bullough 1981, Eichenherr 1981). 

2. Integrability conditions and gauge invariance 

The representation of the equation 
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as the integrability condition for a linear system of equations has been given in terms 
of the local components of a connection (with zero curvature) on an SU(2) bundle 
(Chinea 1981 a,b); a similar formulation exists using an SU(1, 1) connection. In (2.1) 
and in the sequel, a bar denotes complex conjugation, and subscripts correspond to 
partial derivatives; z is a complex function of U and U. 

For the purposes of the present work, the linear system may be written as 

CPU = MQ, cpU =NQ (2.2) 
where 

M = a m ( k )  - 6 m T ( k ) ,  N = bm(-k - ' ) -6mT(-k - ' ) ,  (P = ( Q1) 
(P2 

with 

a = ( z  + z)- lzu,  b = (2 + f ) - l Z u ,  

' k  
m ( k )  = (i - .), k a real constant 

2 

(the transpose of a matrix m is denoted by mT). 
The integrability condition for system (2.2) may be written as 

[a, -M, 8, -NI = 0 (2.3) 

which is equivalent to equation (2.1) by construction. 
Equation (2.1) may be related to the field equation for an O(2, 1)-invariant 

nonlinear a-model (see Pohlmeyer (1976) for a description of the O(3)-invariant case; 
see also Eichenherr (1981) and references quoted therein for a geometric analysis of 
nonlinear a-models defined on symmetric spaces). The field equation is 

(2.4) 

where 4 is a three-dimensional vector, and the scalar product is defined by a diag(+ + -) 
metric. The field 4 is required to satisfy the constraint 

40" - (4" - 4")4 = 0 

(2.5) 2 4 =-la 

Equation (2.1) is shown to be equivalent to (2.4) with (2.5) by introducing the 
parametrisation 

4 = ( z  + T)-'(i(z - f), 1 - ZT, 1 + zf). 
We refer the reader to Liischer and Pohlmeyer (1978), Pohlmeyer (1980) and 

Kafiev (1981) for a detailed account of the properties of nonlinear a-models and their 
relation with four-dimensional Yang-Mills fields. 

Equation (2.3) has the property of being invariant under appropriate gauge trans- 
formations. This is a consequence of the fact that (2.3) represents a (gauge-invariant) 
zero curvature condition for a connection defined by M and N. We shall use the 
possibility to modify the form of the matrices M and N in order to obtain a representa- 
tion equivalent to (2.2), which will be more convenient in what follows. 

If a new column vector 4, related to the previous Q, is defined by 

(P=W 
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where G is a non-singular square matrix, then tj will satisfy the equations 

*U = fi*, * U  =** (2.6) 

fi = G-%G - G-'G,, (2.7) 

where 

fi = G-~NG - G-'G,. 

The freedom allowed by the arbitrariness of G will be used in such a way that equations 
(2.6) be separable, in the sense that each one of the components of i+b independently 
satisfies a second-order equation. By differentiating the first equation in (2.6) with 
respect to U ,  one gets 

= Q+, Q =&Iu +&I2. 
Writing down Q in terms of G and M, 

Q = -G-'G,, + 2(G-'G,)'+ G-'M2G + G-'(M, - 2G,G-'M)G. (2.8) 

In order to decouple the equations for JI1 and 42, Q must be diagonal. It is easy to 
see that to ensure the last requirement, it is sufficient to take 

as this guarantees that Mu -2G,G-'M in (2.8) is diagonal; the remaining terms are 
trivially seen to be diagonal (in particular, M 2  is diagonal by virtue of M having 
vanishing trace). With the choice (2.9) for G, the resulting expression for Q is 

where I = $ [ ( a  - ~ ) - - U ~ ~ U ~ ] ~  + ; [ (a  - d ) - ~ - ~ a , ] ~  and the second-order equations 
for the components of $ are 

$ iuu  = (l-k21a12)Qi, I j /2uu = (r-k21a12)+z. (2.10) 

The explicit form of the matrices M and N is given here for the sake of completeness: 

0 
0 z(a 1 -d ) -za- 'a ,  1 

-kbl  

3. Conserved currents 

The representation of equation (2.1) by means of the linear system (2.6) will permit 
the construction of two infinite families of conserved currents for (2.1). Let us consider 
the function p defined by 

P = 9;1*1u. (3.1) 

pu + p 2  = 1 - k21a 1 2 .  
According to the first equation in (2.6), p will satisfy the Riccati equation 

(3.2) 
Conversely, a solution p of (3.1) defines I/I~ and qj2 as 

+ 1 =  exp(a;'p), +2 =$k-llaJ-'[2p - ( a  - ~ ) + a - ' a , ]  exp(a;'p), (3.3) 
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where the first equation in (2.6) has been used. Upon substitution of (3.3) into the 
second equation, the following continuity equation is obtained: 

aUp + 8,{ik-2b~-1[2p - (U  - 6) + u-'u,]} = 0. (3.4) 
Notice that choosing t,bl or +2 in the definition (3.1) of p is irrelevant. It is also clear 
that everything that is said in terms of the U derivative may be translated into similar 
equations using the v derivative and vice versa, due to the symmetry of the starting 
equation (2.1) in U and v .  

Equation (3.2) admits two types of solutions in terms of formal power series in 
the parameter k. The first one is of the form 

with E' = -1. The coefficients xr  are found recursively after substituting p as given 
by (3.5) in equation (3.2), thus obtaining 

1 
x o =  - ~ l ~ l - l l ~ l u ,  X 1 = - 2 ~ l ~ l - ' ~ ~ - X o U - x ~ ~ ,  

and, in general 
r + l  

1 
x r + 2 = i & I a l - ' ( X r + 1 . u  + r = O  1 xr+l-sxs), r = 0 , 1 , .  . . . 

Each coefficient of the expansion (3.5) for p gives rise to a conserved current of 
equation (2.1), when equation (3.4) is used. The following infinite set of relations is 
obtained: 

aulal = 0,  a o x o  = 0 ,  dux, + 8, (&ba-'la I) = 0 ,  

(3.6) 

Notice that the first equation in (3.6) shows that la1 is a function of U only. Similarly, 
Ibl will be a function of v only. Recalling the definition of a and b and using the 
conformal invariance of (2.1) under U H U ( U ) ,  v I+ V ( v ) ,  one may set 

la l= 1, 16) = 1 

(excluding degenerate cases). We may thus define 
b = e iP (u ,o )  a = eia(u,")7 

When the definitions of a and b are taken into account, a consistency requirement 
forces the real functions a and p to satisfy 

pu = 2 sin a, a, = 2 sin p 
which imply that a + p and a - p are a pair of conjugate solutions of the sine-Gordon 
equation 

cpuv = 4 sin cp. 

With the chosen normalisation for la1 and 161, G E SU(2) and the transformation 

Let us now introduce an alternative expansion of 
(2.7) is an SU(2) transformation of the connection (M, N ) .  

p = arkr. 
r a O  

(3.7) 
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As in the previous case, each coefficient 0; in the expansion (3.7) will give rise to a 
conserved current of (2.1). Substituting (3.7) into (3.2), the following result is obtained: 

(3.8) 

= -ula;l( U T I  'f ar+3-sas , r = O ,  1,. . . . 
s = l  ) 

Equation (3.4) may now be used to get the infinite family of conservation laws 

a,a, + a , ( b a - l ~ ~ , + ~ )  = 0. (3.9) 
The presence of the operator 8;' in the a's appearing in (3.9) makes it clear that the 
family under consideration is a non-local one. 

Finally, let us point out that the term 'conserved current' is not completely 
appropriate when applied to equation (3.9), which should rather be considered as an 
infinite set of evolution equations for certain non-local quantities. The reason for this 
is that the term in parentheses in (3.9) may be shown to be equal to 8;' of an 
appropriate function. This may easily be concluded by noticing that 

a. = id,, ln(ba-l) 

which is a consequence of 

a - a  =a,  In b 

where (2.1) has been taken into account. This implies that 

ab-' = al 

and, as a consequence, 

ba-'u2 = (+;lm2 = -a;l[v;l 

and, for r 3 0, 

1 ba- u ~ + ~  = u T ; ~ u ~ + ~  = -a,, 
s = l  

A similar cancellation of the a,, and a;' operators may be shown to appear in the sets 
of non-local conservation laws quoted above (Sasaki and Bullough 198 1, Eichenherr 
1981). 
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